Hierarchical trie packet classification algorithm based on expectation-maximization clustering

نویسندگان

  • Xia-an Bi
  • Junxia Zhao
چکیده

With the development of computer network bandwidth, packet classification algorithms which are able to deal with large-scale rule sets are in urgent need. Among the existing algorithms, researches on packet classification algorithms based on hierarchical trie have become an important packet classification research branch because of their widely practical use. Although hierarchical trie is beneficial to save large storage space, it has several shortcomings such as the existence of backtracking and empty nodes. This paper proposes a new packet classification algorithm, Hierarchical Trie Algorithm Based on Expectation-Maximization Clustering (HTEMC). Firstly, this paper uses the formalization method to deal with the packet classification problem by means of mapping the rules and data packets into a two-dimensional space. Secondly, this paper uses expectation-maximization algorithm to cluster the rules based on their aggregate characteristics, and thereby diversified clusters are formed. Thirdly, this paper proposes a hierarchical trie based on the results of expectation-maximization clustering. Finally, this paper respectively conducts simulation experiments and real-environment experiments to compare the performances of our algorithm with other typical algorithms, and analyzes the results of the experiments. The hierarchical trie structure in our algorithm not only adopts trie path compression to eliminate backtracking, but also solves the problem of low efficiency of trie updates, which greatly improves the performance of the algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Method for E-Maximization and Hierarchical Clustering of Image Classification

We developed a new semi-supervised EM-like algorithm that is given the set of objects present in eachtraining image, but does not know which regions correspond to which objects. We have tested thealgorithm on a dataset of 860 hand-labeled color images using only color and texture features, and theresults show that our EM variant is able to break the symmetry in the initial solution. We compared...

متن کامل

Enhanced Model-Based Clustering, Density Estimation, and Discriminant Analysis Software: MCLUST

Abstract: MCLUST is a software package for model-based clustering, density estimation and discriminant analysis interfaced to the S-PLUS commercial software and the R language. It implements parameterized Gaussian hierarchical clustering algorithms and the EM algorithm for parameterized Gaussian mixture models with the possible addition of a Poisson noise term. Also included are functions that ...

متن کامل

Workshop on Clustering and Search techniques in large scale networks Hierarchical network clustering by modularity maximization

Community detection based on modularity maximization is currently done with hierarchical as well as with partitioning heuristics, and, in a few papers, exact algorithms. Hierarchical heuristics aim at finding a set of nested partitions. They are in principle devised for finding a hierarchy of partitions implicit in the given network when it corresponds to some situation where hierarchy is obser...

متن کامل

Performance Comparison Of Different Clustering Algorithms With ID3 Decision Tree Learning Method For Network Anomaly Detection

This paper proposes a combinatorial method based on different clustering algorithms with ID3 decision tree classification for the classification of network anomaly detection. The idea is to detect the network anomalies by first applying any clustering algorithm to partition it into a number of clusters and then applying ID3 algorithm for the decision that whether an anomaly has been detected or...

متن کامل

Model-based clustering for RNA-seq data

MOTIVATION RNA-seq technology has been widely adopted as an attractive alternative to microarray-based methods to study global gene expression. However, robust statistical tools to analyze these complex datasets are still lacking. By grouping genes with similar expression profiles across treatments, cluster analysis provides insight into gene functions and networks, and hence is an important te...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017